A collection of COTS, GOTS, and custom software, MPL provides in-depth analysis of mission characteristics supporting pre-launch mission formulation and planning, real-time data monitoring and display, and post-flight data analysis and investigation.

Visibility \rightarrow Feasibility \rightarrow Variability \rightarrow Certainty
MPL is a suite of software visualization and analysis tools.
MPL is a Collaborative Team

Sandy Kleckner, Code 589
Lead Engineer

Ben Cervantes, Code 589
Software Engineering,
Visualizations, Analysis

Sarah Daugherty, Code 589
Software Engineering
Visualizations, Analysis

Cooperative Education
University Student Software
Engineering
Visualizations, Analysis

USRP Intern
Visualizations, Analysis

Maggie Fernandez, Code 548
Mechanical Engineer
Vehicle & Payload Analysis

Bob Ray, Code 548
Mechanical Engineer
Vehicle & Payload Models

Felipe Arroyo, Code 569
Communications Engineer
Link Analysis

MPL – Kleckner/589 (lead), Cervantes/589, Ray/548, Arroyo/569, Daugherty/589, Fernandez/548
MPL Supports GSFC at Wallops

- TacSat III
- MLAS
- Bounds 36.242
- Lynch 40.023
- LaBelle 40.025
- Lehmacher 41.076-79
- Bernhardt CARE 39.009
- Cheatwood IRVE II 36.254
- EDSR
- Hall 12.067, 12.073
- SubTec III Bull AFSS 41.082
- LADEE
- Constellation
- P-3 Greenland Ice Mapping
- CloudSAT
- ORS I
- COTS Taurus II
- 6U SmallSat
• How will it look?
 – Pre-mission planning
 – Models, GIS, attitude
• How did it look?
 – Post-flight analysis
• Analyze ground & space-based tracking asset line of sight
 – Visualized preflight analysis to *emphasize* drop events for MLAS
 – Determined time vehicle could launch for ideal sun angle & lighting for video capture & optical tracking systems for MLAS *(see below)*
Enable trades on aspects of vehicle and payload
Formulate trajectories and attitude maneuvers provided by customer sources

Pre-flight analysis for camera pointing

Post-flight visualization depicting simulation vs. real-time
Link Analysis
• What should or can be changed?
• Adjust various vehicle & mission characteristics to create different trajectories
• Examine trade-offs (i.e. through link analysis)
• Allow customers to make cost benefit or mission assurance decisions for missions

MPL is supporting Code 569 with link analysis on larger plume attenuation model for upcoming Minotaur mission
• Progressing with Independent V&V
 – Verifying pre- and post-flight analysis results
 – Documenting in Verification and Validation log
• Enabling more rapid safety analysis
 – Working with Range Safety on an ongoing basis

For MLAS, MPL provided:
 visibility, feasibility, variability, and certainty
Range Safety Analysis

Three dimensional RF Hazard area analysis
P-3 Ice Mapping in Greenland

- Visualization of P-3 Ice Mapping Missions using post-flight data from both aircraft and LIDAR sensor measuring ice thickness
- Allows dynamic display of mission to clearly relate mission purpose in presentations.
- Provides context to view past and plan future data collections
Viking 300 CloudSAT Test Flight

- Visualization of CloudSAT sensor on Viking 300 UAV within Wallops restricted airspace
- Possible future use for displaying actual data or mapping out flight plans and coverage offered by sensor
- Depiction of communication from Viking 300 to TDRSS to White Sands Facility
MPL Current Capabilities

- Ingest, generate trajectories
- Incorporate attitude maneuvers
- Depict stage separation
- Show payload deployment
- Utilize 3D models
- Simulate line of site & coverage
 - Range and Space-based
- Show atmospheric layers
- Depict terrain with GIS
- Simulate ship data
- Visualize grids
- Generate auto reports
- Provide mixed media (KML, live video)
- Generate COLA reports
- Conduct link analysis
MPL Future

- Building up suite of rocket motor models
- Optimizing Range Safety tools
- Providing displays for Science on a Sphere
- Incorporate Magnetic Field Model
 - Interface with MatLab
- Investigate Missile Modeling Tool
- Remodel plume attenuation
 - Using actual post-flight data
 - Build database
- Utilize more STK reports & graphs
- Modeling historical shipping lanes & air traffic
- Incorporate wind data
- Expand capabilities, including mission design for UAVs, Balloons, Small Satellites
 - Suborbital and special orbital entities
MPL WFF Mission Design Elements
Visualization in Real-Time Experiment (VIRTEX)

- MPL spin-off demonstrates capabilities in real time environment:
 - UAV Control Center success
 - NGSP success
 - SubTec-II/Smith success
 - TacSat-III success
 - MLAS success
 - Hall success with RT3
 - SubTec-III/Bull
- WFF Range Safety has requested footprint for situational awareness

Screen shot during pre-mission simulation tape in Range Control Center (RCC)
In’s and Out’s of MPL

Pre-flight Analysis
Mission Visualization
Link Analysis
Reports
Graphs
Post-flight Analysis

VIRTEEx
Nominal Trajectory
Nominal Attitude
Vehicle and Payload Data
Mission Timeline
Ground and Space Assets
Vehicle Antenna Data
GIS Data
Actual Trajectory
Actual Attitude

MPL - Kleckner/589 (lead), Cervantes/589, Ray/548, Arroyo/569, Daugherty/589, Fernandez/548
MPL Pertinent Points

- Collaborates with:
 - RMMO/840
 - SR Program Office/810
 - Safety/803
 - Advanced Projects/802
 - AETD/500 including Greenbelt
 - GN/452
 - Range Operations, ROC
 - NSROC, WICC
 - KSC, GRC, JPL, LaRC, ORS, SpaceX...

- Provides insight into customer requirements
- Able to propose technology and instrument improvements
- Provides a system of systems exposure to the complexity of a flight project and mission support at WFF
- Follows standard engineering practices including CM
- Support is being requested for more projects, proposal efforts
- Keeps an ongoing list of capabilities to refine and extend
MPL Website
http://sites.wff.nasa.gov/mpl

Wallops Flight Facility
http://www.nasa.gov/wallops

MPL – Kleckner/589 (lead), Cervantes/589, Ray/548, Arroyo/569, Daugherty/589, Fernandez/548