36.297 UG France was successfully launched from White Sands Missile Range, NM on February 21, 2016. This was the second flight for CHESS. The first flight, also a success, was flown in 2014.

CHESS studies translucent clouds in the interstellar medium (ISM) by analyzing the ultraviolet absorption spectra of the two most abundant molecules, molecular hydrogen HII and CO, in the ISM. Scientists will use this data to study where planets like Earth came from by determining the raw materials available as building blocks. Additionally, high-resolution absorption line spectroscopy of the sightlines towards hot stars, in this case Lambda Ori, provides diagnostics to measure the temperature, composition, and velocity fields in the solar neighborhood.

Lambda Ori, Orion's Head, is a hot star located in the center of a relatively spherical HII region. This region is ionized due to λ Ori and expanding into the cool, star-forming interstellar dust around it. The CHESS bandpass 1000-1600 Å is in the ultraviolet part of the electromagnetic spectrum.

For more information, see: http://www.nasa.gov/feature/chess-2-studying-the-birthplace-of-stars-and-planets
46.011 GP Milliner - Multiple User Suborbital Instrument Carrier (MUSIC) launched on March 1, 2016

The purpose of the MUSIC mission was to allow NASA Applied Engineering and Technology Directorate (AETD) personnel to gain experience in developing sounding rocket technology, conduct systems engineering processes and test NASA AETD experiments. This mission resulted in a standard payload carrier with predefined mechanical, telemetry, power and attitude control capabilities to offer to reimbursable customers and other Wallops Flight Facility developments.

The payload carried experiments/instruments developed by AETD and included, High Data Rate X-Band, Wheel Tracker Experiment (WTE), Diminutive Assembly for Nanosatellite deploYables (DANY) WM Wet/Sealed Nosecone, Temperature and Strain measurement, Strain Gauge Management System (SGMS), Iridium GPS Beacon, and the Solid State Altimeter experiment. Additional experiments from West Virginia University’s Undergraduate Student Instrument Project (USIP) included instruments for Plasma Physics and Flight Dynamics with GPS and camera.

41.114 NP DeLeon launched on March 7, 2016.

The goals of NASA’s Space Technology Mission Directorate (STMD) Flight Opportunities Program include utilization of commercial flight opportunities to facilitate rapid development of Space Technology in support of STMD. STMD also seeks to facilitate the maturation of technology payloads from TRL 4 to TRL 6 through flights that simulate relevant space environments.

This flight supported three experiments from the Flight Opportunities program. The experiment from Montana State University was a Radiation Tolerant Computer System (RadPC) provided by Brock La Meres. Controlled Dynamics provided a Vibration Isolation Platform (VIP) experiment. Marc Murbach from NASA Ames flew SOAREX9 on this mission. The Principal Investigator is Paul DeLeon/NASA Ames Research Center.

For more information, see: http://www.nasa.gov/feature/technology-development-focus-of-march-7-rocket-launch-from-wallops

41.114 launches from Wallops Island, VA.

Jeff and Terri with MUSIC during integration.

West Virginia University team integrating their experiment.

For more information, see: http://www.nasa.gov/image-feature/music-successfully-launched-from-nasa-wallops

Image Credit: Wallops Imaging Lab
Integration, Testing & Static Burn

Peregrine Static Firing on Pad 2, Wallops Island

The second Peregrine static burn was conducted on Wallops Island on 3/18/16. A purpose-built horizontal restraint cage was utilized to safely retain the motor to the pad. Minor insulation modifications performed on the motor extended the duration of nominal burn by several seconds as expected. The burn through and nozzle ejection were very similar to the first Peregrine firing conducted at MSFC. Good video, photographic, infrared, and instrumentation data products were recorded to further characterize motor performance. The next firing is planned for later in 2016. Modifications to the next motor are expected to further lengthen the duration of nominal burn enabling increased understanding of motor performance.

36.314 NS Cirtain – High Resolution Coronal Imager (Hi-C)

The High-resolution Coronal Imager (Hi-C) mission scheduled for flight in 2016 is the second flight of this instrument. Hi-C is a pathfinder mission designed to place significant new limits on theories of coronal heating and dynamics by measuring the structures at size scales relevant to reconnection physics. The Hi-C instrument uses normal-incidence Extreme Ultraviolet (EUV) multilayer technology, as developed in the Normal Incidence X-ray Telescope (NIXT) and Transition Region And Coronal Explorer (TRACE) programs. A dual-channel long focal-length telescope and large format back-illuminated CCD camera provide spectroscopic imaging of the corona at 0.1 arcsec resolution. The main objective of the Hi-C investigation is to determine the geometric configuration and topology of the structures making up the inner corona.

CubeSat vibration testing

Tommy with the UCLA Cubesat on the vibration table.

On the web at: http://sites.wff.nasa.gov/code810/
Picture Place

Gary making parts for the Pfaff missions.

Procedures for the DeLeon mission are followed.

NSROC Tin Man Tom and Valerie (not Dorothy).

Ahmed testing electronics.

Aaron and Will studying documents.
Want to contribute?

Working on something interesting, or have an idea for a story? Please let us know, we’d love to put it in print!

Contact:
Chuck Brodell
Phone: #1827
Email: Charles.L.Brodell@nasa.gov

or

Berit Bland
Phone: #2246
Email: Berit.H.Bland@nasa.gov

Launch Schedule CY 2016

<table>
<thead>
<tr>
<th>MISSION</th>
<th>DISCIPLINE</th>
<th>EXPERIMENTER</th>
<th>ORGANIZATION</th>
<th>PROJECT</th>
<th>RANGE</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.318 UE</td>
<td>GEOSPHERE SCIENCE</td>
<td>WOODS</td>
<td>UNIVERSITY OF COLORADO</td>
<td>SDO EVE</td>
<td>WS</td>
<td>MAY-25</td>
<td>DAY</td>
</tr>
<tr>
<td>41.116 UO</td>
<td>STUDENT OUTREACH</td>
<td>KOEHLER</td>
<td>UNIVERSITY OF COLORADO</td>
<td>ROCKON - RockSAT-C</td>
<td>WI</td>
<td>JUN-23</td>
<td>DAY</td>
</tr>
<tr>
<td>36.314 NS</td>
<td>SOLAR & HELIOSPHERIC</td>
<td>CURTAIN</td>
<td>NASA/MSFC</td>
<td>RockSat-X</td>
<td>WS</td>
<td>JUL-18</td>
<td>DAY</td>
</tr>
<tr>
<td>46.014 UO</td>
<td>STUDENT OUTREACH</td>
<td>KOEHLER</td>
<td>UNIVERSITY OF COLORADO</td>
<td>RockSat-X</td>
<td>WI</td>
<td>AUG-16</td>
<td>DAY</td>
</tr>
<tr>
<td>46.015 GT</td>
<td>TEST & SUPPORT</td>
<td>HALL</td>
<td>NASA-WFF</td>
<td></td>
<td>WI</td>
<td>OCT-1</td>
<td>DAY</td>
</tr>
<tr>
<td>36.309 US</td>
<td>SOLAR & HELIOSPHERIC</td>
<td>HASSLER</td>
<td>SWRI</td>
<td>RAISE</td>
<td>WS</td>
<td>OCT-12</td>
<td>DAY</td>
</tr>
<tr>
<td>36.245 UH</td>
<td>HIGH ENERGY ASTROPHYS</td>
<td>FIGUEROA</td>
<td>MIT</td>
<td>MICRO-X</td>
<td>WS</td>
<td>NOV-1</td>
<td>NIGHT</td>
</tr>
<tr>
<td>36.281 UG</td>
<td>UV/OPTICAL ASTROPHYS</td>
<td>BOCK</td>
<td>CAL TECH</td>
<td>CIBER-2</td>
<td>WS</td>
<td>DEC-1</td>
<td>NIGHT</td>
</tr>
<tr>
<td>36.317 GP</td>
<td>SPECIAL PROJECTS</td>
<td>HES</td>
<td>NASA-GSFC-WFF</td>
<td>SUBTEC 7</td>
<td>WI</td>
<td>DEC-13</td>
<td>DAY</td>
</tr>
</tbody>
</table>

WS - White Sands
WI - Wallops Island
NOR - Norway
FB - Fairbanks

Sharon Truitt retired!